API Standard 641, First Edition, 2016 Test Report

"Type Testing of Quarter-turn Valves for Fugitive Emissions"

Performed for

Guide Valve Limited

www.gvs-vci.com

4 inch ANSI 2500 Trunnion Mounted Ball Valve Product Code: 4" ANSI 2500 GB1

Project Number: 220106

Test Start Date: March 12, 2020

Performed by

YARMOUTH RESEARCH AND TECHNOLOGY, LLC

434 Walnut Hill Road North Yarmouth, ME 04097 USA (207) 829-5359

info@yarmouthresearch.com www.yarmouthresearch.com

Yarmouth Research and Technology, LLC

API 641 TEST CERTIFICATE

Certificate Number:	220106A	Test Start Dat	e: 12-Mar-20
		Test End Dat	e: 18-Mar-20

Customer Information						
Customer: Guide Valve Limited						
Web Address: www.gvs-vci.c	om					
Manufacturer Location: 51 Terecar Dr	rive, Woodbr	ridge, Ontario, Canada				
Valve Information						
Valve Size: 4"	Valve P	ressure Class: 2500				
Valve Description: 4" ANSI Trun	nion Mount	ed Ball Valve				
Product Code: 4" ANSI 2500	GB1					
Assembly Drawing No.: Not Supplied						
API/ASME Design Standards: A	API 6D, ASI	ME B16.34				
Stem Seal Description: LIP SEALS + GRAPHITE						
Body Seal Description: 0	Graphite					
Test Results						
Test Specification: A	API 641, Fir	rst Edition, 2016				
Max. Allowable Stem Seal Leakage:	100	PPMv Methane				
Number of Mechanical Cycles:	610					
High Temperature:	High Temperature: 464 deg. F					
Test Pressure at Ambient Temp.: 600 psig						
Test Pressure at High Temp.: 600 psig						
Did valve pass test requirements?	YES					

Valves of the same quarter-turn design as the test valve may be deemed to be qualified subject to paragraph 11 of the test specification.

Mark & Whitelink

Matthew J. Wasielewski, PE President and Manager Yarmouth Research and Technology, LLC 434 Walnut Hill Road North Yarmouth, ME 04097 USA

Yarmouth Research and Technology, LLC

FUGITIVE EMISSION TEST SUMMARY

Customer: Guide Valve Limited	Start Date: 12-Mar-20
Project Number: 218488	End Date: 18-Mar-20
Manufacturing Facility: 51 Targear Drive Woodbridge O	Intario Canada

Manufacturing Facility: 51 Terecar Drive, Woodbridge, Ontario, Canada

e injoination	
Valve Description: 4" ANSI Trunnion Mounte	ed Ball Valve
Product Code: 4" ANSI 2500 GB1	
Valve Selected by: Manufacturer	
API/ASME Design Standard(s): API 6D, ASI	ME B16.34
Body Material: ASTM 350 LF2	Stem Material: 4140
Body Seal Description: Graphite	

Manufacturer's Published Running Torque: 671 ft-lb Closing Torque: 811 ft-lb

Stem Seal Information

Stem Seal Description: L	IP SEALS	S + GRAPHITE			
Recommended Packing Torque: N/A					
Nominal ID:	2.24	inches	OD:	2.56	inches
Minimum Sealing Stress:	N/A		Stack Height:	1.57	inches
Stem Seal Chamber Depth:	1.77	inches	# of Rings: 3	LIP SEA	LS
			+	1 GRAPE	HTE

Test Conditions

Test Specification: API 641, First E	Edition, 20	16
Maximum Allowable Leakage:	100	PPMv
Cycling Rate:	30	seconds per cycle
Maximum Temperature:	464	F
Amb. Temp. Test Pressure: 600 psig	High Te	emp. Test Pressure: 600 psig

Stem Seal Leakage Data

Cycle	Stem Seal	Pressure	Static Lea	kage (PPMv)	Dynamic Lea	kage (PPMv)
Number	Temp - (F)	(psig)	Avg.	Max.	Avg.	Max.
0	70	600	1	1		
100	70	600	6	7	7	8
101	463	600	14	16		
200	461	600	13	15	19	20
201	73	600	1	2		
300	73	600	0	1	1	1
301	462	600	6	7		
400	464	600	5	6	5	6
401	93	600	1	1		
500	91	600	3	3	2	3
501	465	600	1	2		
600	464	600	3	3	3	4
601	90	600	1	1		
610	87	600	0	1	1	1
		Averages ->	4	5	5	6
	N	/Iaximums ->	14	16	19	20

Yarmouth Research and Technology, LLC

Body Seal Leakage

Leak	Cycle	Bonnet	Pressure	Leakage	e (PPMv)
Path	Number	Temp - (F)	(psig)	Avg.	Max.
Body Seal A	0	71	600	1	1
Body Seal B	0	71	600	1	1
Bonnet Seal	0	71	600	1	1
Body Seal A	610	80	600	0	1
Body Seal B	610	80	600	0	1
Bonnet Seal	610	78	600	1	1

Operating	Actuator	Pressure
-----------	----------	----------

Operating Actuator Pressure First Cycle:	15	psig
Operating Actuator Pressure Last Cycle:	10	psig

Results

Number of Mechanical Cycles Completed:	610		
Number of Thermal Cycles Completed:	3		
Maximum Static Leakage Throughout Test:	16	PPMv	
Maximum Dynamic Leakage Throughout Test:	20	PPMv	
Maximum Body/Bonnet Leakage Throughout Test:	1	PPMv	

|--|

Qualifications of similar valves according to para. 11	of test standard per	
	Valve Group:	D

Test Notes:

Certified By

Matthew J Wasielewski, PE President and Manager

Yarmouth Research and Technology, LLC

Mart Q Winder L.

Test Technician: Jesse Jarvi

WASIELEWSKI NO. 7437

WASIELEWSKI WSIELEWSKI WSIELEWSKI WASIELEWSKI WSIELEWSKI WSIELEWS